
EECS 482 Introduction to Operating Systems
Spring/Summer 2020

Lecture 25: Virtual machine monitors

Based on slides by Harsha V. Madhyastha

Nicole Hamilton
https://web.eecs.umich.edu/~nham/

nham@umich.edu

https://web.eecs.umich.edu/%7Enham/
mailto:nham@umich.edu

Agenda
1. Announcements.

2. Final exam.

3. Project 4.

4. Student evals.

5. Virtual machine monitors.

6. The big ideas in 482.

2

Agenda
1. Announcements.

2. Final exam.

3. Project 4.

4. Student evals.

5. Virtual machine monitors.

6. The big ideas in 482.

3

Announcements
Labs ended last Friday.
Today is the last lecture.
Style grading on P3 is 95% complete.
P4 due Mon Aug 17.
Final exam review session Tue Aug 18, 3:00 pm to 5:00 pm.
Final exam Thu Aug 20, 3:00 pm to 5:00 pm.

4

Agenda
1. Announcements.

2. Final exam.

3. Project 4.

4. Student evals.

5. Virtual machine monitors.

6. The big ideas in 482.

5

Final exam
Just like the midterm.

Online using Crabster.org
Thu Aug 20 3:00 to 5:00
pm EDT.

We will post a link via
Canvas and Piazza once
the exam is live.

We will monitor Piazza for
questions.

6

Material for the final:

1. Everything except my bonus
lecture.

2. Focus will be on P3 and P4
and lecture topics since the
midterm.

3. Review session Tue Aug 18
3:00 pm to 5:00 pm.

Final exam policy
The exam will be “open everything” except collaboration.

You can use any existing resource, including lecture notes, the book,
your project solutions, you can even use Google, and your IDE.

The only thing you can’t do is collaborate with others, including using
social media to solicit help. If you can find an existing answer on
stackexchange that’s helpful, that’s fair game. But you can’t post a
question.

Also, parts of the exam ask for short answers, which must be in your
own words. Cutting and pasting word-for-word from an existing
source and “close copying” will be treated as plagiarism and
reported to the Honor Council.

7

Agenda
1. Announcements.

2. Final exam.

3. Project 4.

4. Student evals.

5. Virtual machine monitors.

6. The big ideas in 482.

8

Project 4 Testing
Verifying concurrency

Test with a pair of requests
Consider every combination of request types
Vary commonality in pathnames
Block around “slow” operations

Example:
FS_CREATE for /a/b/c blocks holding write lock for b
FS_CREATE for /a/b/d cannot proceed
FS_CREATE for /a/f/g should be able to complete

9

Agenda
1. Announcements.

2. Final exam.

3. Project 4.

4. Student evals.

5. Virtual machine monitors.

6. The big ideas in 482.

10

Student evals
Please get them done.

They are super important.

The 370 and other questions …

If you wonder if they matter …

11

Agenda
1. Announcements.

2. Final exam.

3. Project 4.

4. Student evals.

5. Virtual machine monitors.

6. The big ideas in 482.

12

OS Abstractions

14

Operating System

Hardware

Applications

CPU Disk RAM

Process File system Virtual memory

NetworkI/O
Devices

Virtual Machine Monitor

15

Operating System

Hardware

Applications

CPU Disk RAM

Process File system Virtual memory

NetworkI/O
Devices

Virtual Machine Monitor

What is a VMM?
OS enables co-existence of multiple processes.

Offers illusion that each process is on own computer.

A VMM enables multiple OS instances to run simultaneously on a
machine.

What interface should VMM export?

A VMM virtualizes an entire physical machine.
Offers illusion that OS has full control over hardware.
VMM “applications” (OSes) run in virtual machines.

17

Why run multiple OSes?
1. Some applications only run on certain operating systems and you

only have one machine.

2. Developing and testing an OS.

3. Running possibly malicious software.

4. Cloud services like Amazon’s AWS that rent out virtual machines to
customers, all completely firewalled from each other.

18

Why run multiple OSes?
Resource utilization.

Machines today are powerful; would like to share them, e.g., with
Cloud services.
Migrate VMs across machines without shutdown.

Software use and development.
Can run multiple OSes simultaneously; no need to dual boot.
Allows OS system development at user-level.

Many other cool applications
Debugging, emulation, security, fault tolerance, …

19

Example of Cool VMM Tricks
How to experiment with apps, protocols, and systems on future
hardware?

Example: How to experiment with 100 Gbps network?
Time dilation

VMM slows timer interrupt to make hardware (CPU, disk, network)
appear faster to OS and apps.
Example:

OS reads 10 Gb of data from network in 1 second, but thinks
only 0.1 second has elapsed.
But, applications run 10x slower.

20

Example of Cool VMM Tricks

21

VMM Requirements
Fidelity

OSes and applications work without modification.
(But we may modify the OS a bit.)

Isolation
VMM protects resources and VMs from each other.

Performance
VMM is another layer of software  overhead.

As with OS, want to minimize this overhead.

22

VMware ESXi Server
Most popular VM at cloud services.

VMware ESX server uses a hypervisor
model.

VMM runs directly on hardware.

Everything goes through the hypervisor.

Main downside is performance.

Software virtualization allows dynamic
rewriting of the code executed in VM.

Rewrites only privileged instructions to
reduce overhead.

23

Microsoft WSL 2
Microsoft’s Windows Subsystem
for Linux also uses a hypervisor
architecture.

24

Xen
University of Cambridge open source
research project.
Used by Amazon AWS.
Xen hypervisor runs at privilege, VMs
(domains) run unprivileged.
Trusted OS (Linux) runs in own domain
(Domain0), manages privileged
operations and has direct access to the
hardware.
Early versions used “paravirtualization”,
a fancy word for “we have to modify &
recompile OS.”
Most recent version does not require OS
mods.
Because of Intel/AMD hardware support
Commercialized via XenSource, but also
open source

25

VMware Workstation

26

VMware Workstation uses hosted
model.

Free version for MacOS.

VMM runs unprivileged, installed on
base OS and relies upon base OS for
device functionality.

The entire virtualization runs as an
application process.

Most flexible. Allows booting of whole
operating system as an application.

Several levels of indirection.

Slow but better than dual-booting for a
personal machine.

What needs to be virtualized?
Exactly what you would expect:

CPU
Events
Memory
I/O devices

Isn’t this just duplicating OS functionality?
Yes and no.
Approaches will be similar to what OS does.

Simpler functionality (VMM much smaller than OS).
But implements a different abstraction:

Hardware interface vs. OS interface.

27

Virtualizing Memory
OS assumes full control over memory.

But VMM partitions memory among VMs.
VMM needs to control mappings for isolation.

OS can only map to a physical page given to it by VMM.

Solution: Need MMU support to handle two-levels of page tables.

28

Shadow Page Tables

29

Three abstractions of
memory.

Machine: actual hardware
memory, e.g., 2 GB of
DRAM.

Physical: The memory
given to each guest
operating system to be
managed by it.

Virtual: virtual address
space per process.

Shadow Page Tables

30

If a VMM allocates 512
MB to a VM, the OS
thinks the computer has
512 MB of contiguous
physical memory.

Underlying machine
memory may be
discontiguous.

Shadow Page Tables

31

In each VM, OS creates
and manages page tables
for its virtual address
spaces without
modification

But these page tables are
not used by the MMU
hardware.

Agenda
1. Announcements.

2. Final exam.

3. Project 4.

4. Student evals.

5. Virtual machine monitors.

6. The big ideas in 482.

32

482 – The Big Ideas

33

Operating System

Hardware

Applications

CPU Disk RAM

Process File system Virtual memory

NetworkI/O
Devices

Virtual Machine Monitor

482 – The Big Ideas
Abstraction: Virtualizing a resource.

CPU  Thread
Physical memory  Address space
Disk  File system

Concurrency and consistency.
Ordering, atomicity, and transactions.

34

482 – The Big Ideas
Caching and exploiting locality.

Memory as a cache for disk + LRU eviction.

Indirection.
Gains power, hurts performance.
Recover performance via caching.
Multi-level paging + TLB, inode map in the Linux filesystem.

Tolerating faults through redundancy.
RAID, replication.

35

The end.

36

Thank you.
It has been my honor to be your instructor.

I could not have done it without my wonderful staff, Austin, Brandon
and Celine.

Special thanks to Harsha Madhyastha for his slides and to Ben
Reeves for help setting up the course.

I know this course has been an enormous amount of work for all you.
I hope you’ve enjoyed it and that it helps you in your career
objectives.

I hope to see some of you again, perhaps in my EECS 440 W21
System Design of a Search Engine class.

I wish you all great success.

37

	EECS 482 Introduction to Operating Systems�Spring/Summer 2020�Lecture 25: Virtual machine monitors
	Agenda
	Agenda
	Announcements
	Agenda
	Final exam
	Final exam policy
	Agenda
	Project 4 Testing
	Agenda
	Student evals
	Agenda
	OS Abstractions
	Virtual Machine Monitor
	What is a VMM?
	Why run multiple OSes?
	Why run multiple OSes?
	Example of Cool VMM Tricks
	Example of Cool VMM Tricks
	�VMM Requirements
	VMware ESXi Server
	Microsoft WSL 2
	Xen
	VMware Workstation
	�What needs to be virtualized?
	Virtualizing Memory
	Shadow Page Tables
	Shadow Page Tables
	Shadow Page Tables
	Agenda
	482 – The Big Ideas
	482 – The Big Ideas
	482 – The Big Ideas
	The end.
	Thank you.

